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Abstract

The quantum group version of the Bernstein–Gelfand–Gelfand resolution is used to construct a double complex of Uq (g)-
modules with exact rows and columns. The locally finite dual of its total complex is identified with the de Rham complex for
quantized irreducible flag manifolds.
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1. Introduction

Over the last two decades a vast amount of papers have been devoted to the translation of classical geometric
concepts to coordinate algebras appearing in the theory of quantum groups. It is a recurring theme that such
constructions are possible if the underlying geometric object can be expressed in purely Lie algebraic terms. A list
of examples where this translation has a very simple and compelling form might include the standard definition of
the q-deformed coordinate algebra Cq [G] inside the dual Hopf algebra of Uq(g) [9, 9.1.1] or the construction of the
quantum group version of the homogeneous coordinate ring of a flag manifold [9, 9.1.6]. Certainly, one always aims
for quantum effects, as for instance Drinfeld duality, which transcend the classical undeformed situation. However,
we will not encounter significant quantum effects in this paper.

Differential forms are an example of a geometric concept where the translation from the classical to the quantum
group setting is far from obvious in general. However, there is a notion of covariant differential calculus on quantum
spaces, introduced by S.L. Woronowicz [24], which has attracted much attention for many years ([12] and references
therein). It soon turned out that for a general quantum space there exists no canonical construction of a covariant
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differential calculus. However, in [7] we showed that for quantized irreducible flag manifolds G/PS where G is a
simple complex affine algebraic group and PS a standard parabolic subgroup there exists a q-analogue of the de Rham
complex which in many respects behaves like its undeformed counterpart. The aim of the present paper is to relate
this complex to its Lie algebraic shadow, the Bernstein–Gelfand–Gelfand (BGG) resolution. In the quantum case such
a construction was suggested by L.L. Vaksman and a first indication of its feasibility can be found in [22] where
generalized Verma modules are used to obtain q-analogues of differential one forms.

The main result of the present paper, Theorem 7.14, states that the de Rham complex investigated in [7] can also
be obtained as the locally finite dual of a BGG-like sequence of Uq(g)-modules induced by Uq(lS)-modules, where
lS denotes the Levi factor of the parabolic subalgebra pS ⊂ g . More precisely the BGG resolution for quantum
groups [4] is used to define quantum analogues of the complexes of holomorphic and antiholomorphic differential
forms on flag manifolds (Proposition 7.8 and Section 7.3). In Section 7.4 we introduce a double complex the rows
and columns of which are closely related to the BGG resolutions used to obtain the holomorphic and antiholomorphic
differentials, respectively. The desired de Rham complex is then obtained as the locally finite dual of the total complex
of this double complex.

The reason why we have to consider Uq(lS)-modules, instead of Uq(pS)-modules as one might expect, lies in
the definition of the coordinate algebra Cq [G/L S] describing the quantum flag manifold. Its classical counterpart is
the coordinate ring of the affine algebraic variety G/L S where L S denotes the Levi factor of PS . The advantage of
this approach lies in the fact that Cq [G] is a Hopf–Galois extension of Cq [G/L S]. Thus M. Takeuchi’s categorical
equivalence [23] applies and one can make use of results on differential calculi on quantum homogeneous spaces [5].

A result similar in spirit has recently been obtained in [21]. In that paper the universal higher order differential
calculus constructed in [22] is identified with the category O dual of the q-version of the BGG resolution. Hence
in the approach taken in [21] Takeuchi’s categorical equivalence is not available and the authors have to revert to
specialization techniques. In the present paper, on the other hand, all results are proved for any deformation parameter
q ∈ C which is not a root of unity.

As the reader might at first be put off by the technical nature of our paper we now state the main result in the special
case of one-dimensional quantum complex projective space also known as standard quantum sphere. This simplest
example of an irreducible quantized flag manifold in itself has been subject to various publications, e.g. [3,20,15]. We
believe that our analysis will lead to new insight even in this simplest case.

Recall that Uq(sl2) denotes a Hopf algebra generated by elements E , F , K , and K−1 and relations given for
instance in [12, 3.1]. Let Uq(l) denote the subalgebra generated by K and K−1, for n ∈ Z let V (n) denote the
one-dimensional Uq(l)-module generated by one element vn with the action Kvn = q2nvn , and define W (n,m) :=
Uq(sl2)⊗Uq (l) V (n−m). Note that W (0, 0) is a coalgebra and that W (n,m) is a left and right comodule over W (0, 0)
with coactions given by

u ⊗ vn 7→ (u(1) ⊗ v0)⊗ (u(2) ⊗ vn) and u ⊗ vn 7→ (u(1) ⊗ vn)⊗ (u(2) ⊗ v0),

respectively, where Sweedler notation is used. Consider the following sequence of Uq(sl2)-modules, W (0, 0)-
bicomodules

W (1, 0)
ϕ1,0;0

%%KKKKKKKKKK

0 // W (1, 1)

−ϕ1;1,0
99ssssssssss

ϕ1,0;1

%%KKKKKKKKKK
⊕

W (0, 0) // 0

W (0, 1)

ϕ0;1,0
99ssssssssss

(1)

where ϕa;b,c(u⊗va−b) = uF⊗va−c and ϕa,b;c(u⊗va−c) = uE⊗vb−c. The locally finite dual of W (a, b) is defined
by

Ωa,b
= { f ∈ W (a, b)∗ | dim( f Uq(sl2)) <∞}

where W (a, b)∗ denotes the linear dual space of W (a, b). As W (0, 0) is a Uq(sl2)-module coalgebra the space
B = Ω0,0 is a Uq(sl2)-module algebra and as such B coincides with the standard quantum sphere. Dualizing (1)
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one obtains a sequence of Uq(sl2)-module B-bimodules

Ω1,0

∂1;1,0

""E
EEEEEEE

0 // B

∂1,0;0
>>||||||||

∂0;1,0   B
BB

BB
BB

B
⊕

Ω1,1 // 0.

Ω0,1

∂1,0;1

<<yyyyyyyy

The main result of this paper, Theorem 7.14, states in this special case, that this sequence coincides with the well
known de Rham complex [18] over the standard quantum sphereB. As an application one can for instance immediately
read off the twisted cyclic cocycle calculated in [20, Lemma 4.4].

We now describe the contents of each section of this paper in some detail. In Section 2 we fix notation. Moreover,
we compare the standard resolution of the trivial module with the parabolic version of the BGG resolution and show
that these two coincide if g /pS is irreducible. This result should be well known but we were not able to track it in the
literature. On the one hand it explains once again why it is necessary to assume irreducibility of the considered flag
manifolds. On the other hand, it implies that certain weights w.0 are incomparable in the Bruhat order.

Section 3 serves purely to fix notation for quantum groups and to recall M.S. Kébé’s results on triangular
decompositions of Uq(g) with respect to parabolic subalgebras. In Section 4 we quickly review the q-analogue of
the BGG resolution which by [4] is exact if q is not a root of unity. Section 5 is devoted to Uq(g)-modules induced by
irreducible Uq(lS)-modules. We denote the category of finite direct sums of such modules by W . In Section 5.3 we
derive technical properties of standard maps between objects in W related to the BGG resolution. The locally finite
duals of objects inW are interpreted as yet another realization of Takeuchi’s categorical equivalence in Section 6.

The main technical work is done in the final Section 7. First the main results from [7] are recalled. Then the
differential calculi (Γ∂ , ∂), (Γ∂ , ∂), and (Γd, d) from that paper are interpreted as locally finite duals of BGG-like
sequences inW .

Explicit calculations flooded by symbols are inherent to proofs in quantum group theory. For the convenience of
the reader we have collected all commonly used notation in order of appearance in an Appendix.

2. Preliminaries

Let N, Z, and C denote the positive integers, the integers, and the complex numbers, respectively. We write N0 to
denote the nonnegative integers.

2.1. Notation

First, to fix notation some general notions related to Lie algebras are recalled. Let g be a finite dimensional complex
simple Lie algebra of rank r and let h ⊂ g be a fixed Cartan subalgebra. Let R ⊂ h∗ denote the root system associated
with (g , h). Choose an ordered basis π = {α1, . . . , αr } of simple roots for R and let R+ (resp. R−) be the set of
positive (resp. negative) roots with respect to π . Moreover, let g = n+ ⊕ h ⊕ n− be the corresponding triangular
decomposition. Identify h with its dual via the Killing form. The induced nondegenerate symmetric bilinear form on
h∗ is denoted by (·, ·). The root lattice Q = ZR is contained in the weight lattice P = {λ ∈ h∗ | (λ, α∨i ) ∈ Z∀αi ∈ π}

where α∨i := 2αi/(αi , αi ). In order to avoid roots of the deformation parameter q in the following sections we rescale
(·, ·) such that (·, ·) : P × P → Z. For µ, ν ∈ P we write µ ≥ ν if µ − ν is a sum of positive roots. The height
function ht : Q → Z is defined by ht(

∑r
i=1 niαi ) =

∑r
i=1 ni .

The fundamental weights ωi ∈ h∗, i = 1, . . . , r , are characterized by (ωi , α
∨

j ) = δi j . Let P+ denote the set of
dominant integral weights, i. e. the N0-span of {ωi | i = 1, . . . , r}. Recall that (ai j ) := (2(αi , α j )/(αi , αi )) is the
Cartan matrix of g with respect to π . We will write Q+ = N0 R+.

For µ ∈ P+ let V (µ) denote the finite dimensional irreducible g -module of highest weight µ. Moreover, let
Π (V (µ)) denote the set of weights of the g -module V (µ).



I. Heckenberger, S. Kolb / Journal of Geometry and Physics 57 (2007) 2316–2344 2319

Let G denote the connected simply connected complex Lie group with Lie algebra g . For any set S ⊂ π of simple
roots define QS = ZS, Q+S = QS ∩ Q+, and R±S := QS ∩ R±. Let PS and Pop

S denote the corresponding standard
parabolic subgroups of G with Lie algebra

pS = h⊕
⊕

α∈R+∪R−S

g α, p
op
S = h⊕

⊕
α∈R−∪R+S

g α, (2)

respectively. Moreover,

lS := h⊕
⊕

α∈R+S ∪R−S

g α

is the Levi factor of pS and L S = PS ∩ Pop
S ⊂ G denotes the corresponding subgroup.

The generalized flag manifold G/PS is called irreducible if the adjoint representation of pS on g /pS is irreducible.
Equivalently, S = π \ {αi } where αi appears in any positive root with coefficient at most one. For a complete list of all
irreducible flag manifolds consult e.g. [1, p. 27]. Note that the irreducible flag manifolds coincide with the irreducible
compact Hermitian symmetric spaces [8, Section X.6.3]

Define P+S := {λ ∈ P | (λ, αi )/di ∈ N0 ∀αi ∈ S}. To λ ∈ P+S we associate the finite dimensional, irreducible
lS-module M(λ) of highest weight λ.

Let W denote the Weyl group of g generated by the reflections corresponding to the simple roots in π . For any
α ∈ R+ let sα ∈ W denote the reflection on the hyperplane orthogonal to α with respect to (·, ·). Let WS ⊂ W denote
the subgroup generated by the reflections corresponding to simple roots in S. Moreover, define

W S
= {w ∈ W | R+S ⊂ wR+}.

By a well known result of B. Kostant any element w ∈ W can be decomposed uniquely in the form w = wSw
S

where wS ∈ WS and wS
∈ W S . Moreover, if l denotes the length function on W then this decomposition satisfies

l(w) = l(wS)+ l(wS).
The following technical lemma will be used in the proof of Propositions 6.1 and 6.5.

Lemma 2.1. For any λ ∈ P+S ∩ P there exist µ ∈ P+ which allows an injective lS-module map M(λ) ↪→ V (µ).

Proof. Choose w ∈ W such that µ := w−1λ ∈ P+. Write w = wS w
S where wS ∈ WS and wS

∈ W S . Then
wSµ = w−1

S λ. Let vwSµ ∈ V (µ) denote a nonzero vector of weight wSµ. Note that vwSµ is a highest weight vector
for lS . Indeed, if wSµ+αi ∈ Π (V (µ)) for some αi ∈ S then (wS)−1(wSµ+αi ) = µ+ (w

S)−1αi 6∈ Π (V (µ)) since
(wS)−1αi ∈ R+. Therefore w−1

S λ ∈ P+S and λ ∈ P+S and hence wSµ = w−1
S λ = λ. �

Recall that the shifted action of the Weyl group W on P is defined in terms of the ordinary Weyl group action by

w.µ = w(µ+ ρ)− ρ

where ρ is half the sum of all positive roots or equivalently ρ =
∑r

i=1 ωi . Moreover, for w,w′ ∈ W write w→ w′ if
there exists α ∈ R+ such that w = sαw′ and l(w) = l(w′)+ 1. The Bruhat order ≤ on W is then given by the relation

w ≤ w′ ⇔ there exist n ≥ 1 and w2, . . . , wn−1 ∈ W such that w = w1 → w2 → · · · → wn − w
′.

2.2. Standard resolution and BGG resolution

Let g be a complex Lie algebra and p a subalgebra. In [2] I.N. Bernstein, I.M. Gelfand, and S.I. Gelfand have given
the following generalization of the standard resolution of Lie algebra cohomology. The adjoint action of p on g /p
endows each exterior product Λk(g /p) with the structure of a U (p)-module. Define

Dk = U (g )⊗U (p) Λk(g /p)

and

d0 : U (g )⊗U (p) C = D0 → C, u ⊗ x 7→ ε(u)x
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where ε denotes the counit of U (g ). Moreover, for k ≥ 1 define operators dk : Dk → Dk−1 in the following way. Let
X1, . . . , Xk be elements of g /p. Let Y1, . . . , Yk ∈ g be arbitrary representatives of X1, . . . , Xk , respectively, and put

dk(X ⊗ X1 ∧ · · · ∧ Xk) =

k∑
i=1

(−1)i+1(XYi ⊗ X1 ∧ · · · ∧ X̂ i ∧ · · · ∧ Xk)

+

∑
1≤i< j≤k

(−1)i− j (X ⊗ [Yi , Y j ] ∧ X1 ∧ · · · ∧ X̂ i ∧ · · · ∧ X̂ j ∧ · · · ∧ Xk). (3)

Here X ∈ U (g ) and we write Y for the image of the element Y ∈ g in g /p. Moreover, X̂ denotes omission of the
element X . One obtains a complex

D∗ : 0← C d0
← D0

d1
← D1

d2
← D2

d3
← . . .

which is exact by [2, Thm. 9.1]. In general the complex D∗ does not have an analogue for quantum universal
enveloping algebras.

Let now g be a finite dimensional simple complex Lie algebra and pS ⊂ g a standard parabolic subalgebra as in
the previous subsection.

For any irreducible highest weight module V (µ) of g , where µ ∈ P+, in generalization of [2] J. Lepowsky [14]
constructed an exact sequence of U (g )-modules

0← V (µ)← C0 ← C1 ← · · · ← Cdim(g /pS)← 0

where

Cn =
⊕
w∈W S ,
l(w)=n

U (g )⊗U (pS) M(w.µ).

Here the differentials are given as linear combinations of standard maps of the occurring generalized Verma modules.
In particular if µ = 0 one obtains an exact sequence

C∗ : 0← C δ0
← C0

δ1
← C1

δ2
← · · · ← Cdim(g /pS)← 0. (4)

For general parabolics the sequences of U (g )-modules C∗ and D∗ are not isomorphic. Indeed, if g /pS is not
irreducible then not even D1 and C1 need to be isomorphic. However, one has the following result.

Proposition 2.2. If g /pS is irreducible then the corresponding complexes of U (g )-modules (C∗, δ∗) and (D∗, d∗)
are isomorphic.

Proof. Consider the Lie subalgebra

u−S =
⊕

α∈R−\R−S

g α ⊂ g .

One has decompositions g = u−S ⊕pS and U (g) ∼= U (u−S )⊗U (pS) by the Poincaré–Birkhoff–Witt Theorem. Note that
both D∗ and C∗ are free resolutions of the trivial left U (u−S )-module C. Thus both sequences can be used to compute

Tor
U (u−S )
j (C,C) where the first entry C denotes the trivial right U (u−S )-module. Note that if g /pS is irreducible then

the second term in (3) vanishes, because u−S is commutative. Thus in the complex C⊗U (u−S )
D∗ all differentials vanish

and therefore

dim(Tor
U (u−S )
j (C,C)) = dim(Λ j (g /pS)).

Similarly the sequence (4) yields (cp. [14, Cor. 3.11])

dim(Tor
U (u−S )
j (C,C)) =

∑
w∈W S ,
l(w)= j

dim(M(w.0)).
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Thus one obtains

dim(Λ j (g /pS)) =
∑
w∈W S ,
l(w)= j

dim(M(w.0)). (5)

As Λ j (g /pS) and U (g) are graded by the root lattice and the differentials d j of the complex D∗ respect this grading
one can define a Z-grading of the complex D∗ by

deg(u ⊗ v) = (ωs,wt(u)+ wt(v)) = (ωs,wt(u))− j

where u ∈ U (g) and v ∈ Λ j (g /pS) are homogeneous elements. Similarly the complex C∗ is Z-graded by the
same formula where now v ∈ M(w.0) for some w ∈ W S with l(w) = j . Assume now that the complexes D∗
and C∗ are isomorphic as Z-graded complexes of U (g)-modules up to complex degree k. This holds for k = 0. Set
Zk := ker dk ⊂ Ck = Dk . Then dk+1(Dk+1) = Zk = δk+1(Ck+1) by exactness of the sequences. Moreover, from (3)
one obtains that dk+1 is injective when restricted to 1⊗ Λk+1(g /pS). Note that

1⊗ Λk+1(g /pS) = {x ∈ Dk+1 | deg(x) = −(k + 1)}

and hence

dk+1(1⊗ Λk+1(g /pS)) = Z−(k+1)
k

for Z−(k+1)
k := {x ∈ Zk | deg(x) = −(k + 1)}. As Zk does not contain any element x such that deg(x) > −(k + 1)

one has δk+1(U (g)⊗U (pS) M(w.0)) = 0 if (ωs,wt(w.0)) > −(k + 1). By the injectivity of dk+1 and (5) one has

dim(Z−(k+1)
k ) =

∑
w∈W S ,

l(w)=k+1

dim(M(w.0)).

As δk+1 maps onto Zk this implies

δk+1

1⊗
⊕
w∈W S ,

l(w)=k+1

M(w.0)

 = Z−(k+1)
k .

Hence one obtains in view of (5) that the composition

φk+1 : 1⊗
⊕
w∈W S ,

l(w)=k+1

M(w.0)
δk+1
−→ Z−(k+1)

k
(dk+1)

−1

−→ 1⊗ Λk+1(g /pS)

is an isomorphism of U (pS)-modules. By construction

Id⊗ φk+1 : U (g)⊗U (pS)

⊕
w∈W S ,

l(w)=k+1

M(w.0)→ U (g)⊗U (pS) Λ
k+1(g /pS)

extends the isomorphism of complexes to degree k + 1. �

As an application one obtains the following corollary.

Corollary 2.3. Let g /pS be irreducible and let w1, w2 ∈ W S be elements of equal length l(w1) = l(w2).

(1) One has w1.0− w2.0 ∈ QS .
(2) If w1 6= w2 then w1.0− w2.0 6∈ Q+S .

Moreover, if w,w′ ∈ W S and l(w) = l(w′)+ 1 then ωs(w.0− w′.0) = 1.

Proof. (1) By the above proposition w1.0 and w2.0 occur as weights of Λl(w1)(g /pS). As g /pS is irreducible the
weights of g /pS differ by elements in QS . Then so do the weights of Λl(w1)(g /pS).
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(2) Assume w1.0 − w2.0 ∈ Q+S , or equivalently w1ρ − w2ρ ∈ Q+S . Multiplication by w−1
2 and the definition of

W S yield

w−1
2 w1ρ − ρ ∈ Q+.

Since ρ is dominant and W acts faithfully on ρ one obtains a contradiction unless w1 = w2.
The last statement follows from the fact that the map φk from the proof of the proposition is an isomorphism of

U (pS)-modules. �

Remark 2.4. (1) In the above corollary the condition of irreducibility of g /pS can’t be dropped. Indeed, for S = ∅
one has QS = {0} but w1.0 6= w2.0 for w1 6= w2.

(2) Also one can’t replace 0 by a more general weight µ ∈ P+. Consider for example g = sl4, S = {α1, α3}, and
µ = ω3. Then s2s3.ω3 = ω3−2α3−3α2 and s2s1.ω3 = ω3−α1−2α2 and hence s2s3.ω3−s2s1.ω3 = α1−α2−2α3 6∈

QS . On the other hand s2s3 and s2s1 are elements of W S of equal length.

3. Quantum groups

3.1. Definition of Uq(g) and Cq [G]

We keep the notation of the previous section. Let q ∈ C \ {0} be not a root of unity. The q-deformed
universal enveloping algebra Uq(g) associated to g is considered here as the complex algebra generated by elements
Ki , K−1

i , Ei , Fi , i = 1, . . . , r , and relations as given for instance in [12, 6.1.2]. In particular one has

Ki E j = q(αi ,α j )E j Ki , Ki F j = q−(αi ,α j )F j Ki ,

Ei F j − F j Ei = δi j
Ki − K−1

i

q(αi ,αi )/2 − q−(αi ,αi )/2
.

(6)

The algebra Uq(g) has a Hopf algebra structure with coproduct given by

∆Ki = Ki ⊗ Ki , ∆Ei = Ei ⊗ Ki + 1⊗ Ei , ∆Fi = Fi ⊗ 1+ K−1
i ⊗ Fi .

These formulae for the coproduct imply in particular that the antipode κ of Uq(g) is given by

κ(Ki ) = K−1
i , κ(Ei ) = −Ei K−1

i , κ(Fi ) = −Ki Fi .

The counit will be denoted by ε. We will make frequent use of Sweedler notation in the form ∆u = u(1) ⊗ u(2) for
u ∈ Uq(g). Moreover, for any u, x ∈ Uq(g) we will write (ad u)x = u(1)xκ(u(2)) to denote the left adjoint action.

There exists a uniquely determined algebra isomorphism coalgebra antiisomorphism η of Uq(g) such that

η(Ei ) = Fi , η(Fi ) = Ei , η(K±1
i ) = K∓1

i .

Let Uq(n
+),Uq(n

−) ⊂ Uq(g) denote the subalgebras generated by {Ei | 1 ≤ i ≤ r} and {Fi | 1 ≤ i ≤ r},
respectively. Let U 0

⊂ Uq(g) be the subalgebra generated by {Ki , K−1
i | 1 ≤ i ≤ r}. Moreover, let G+ ⊂ Uq(g)

denote the subalgebra generated by {Ei K−1
i | 1 ≤ i ≤ r}.

Forµ ∈ P+ let V (µ) denote the uniquely determined finite dimensional irreducible left Uq(g)-module with highest
weight µ. More explicitly, there exists a highest weight vector vµ ∈ V (µ) \ {0} satisfying

Eivµ = 0, Kivµ = q(µ,αi )vµ for all i = 1, . . . , r. (7)

In general a vector v ∈ V (µ) is called a weight vector of weight wt(v) ∈ P if Kiv = q(wt(v),αi )v for all i = 1, . . . , r .
The dual V ∗ of a finite dimensional Uq(g)-module V is defined as the dual vector space with the Uq(g)-action

given by

(u f )(v) = f (κ(u)v) ∀v ∈ V, f ∈ V ∗, u ∈ Uq(g).
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For any left Uq(g)-module V define a new Uq(g)-module Vη to be the same vector space with the left Uq(g)-module
structure •η given by

u•ηv := η(u)v for all u ∈ Uq(g), v ∈ V . (8)

Note that V (µ)η ∼= V (µ)∗.
As usual the q-deformed coordinate ring Cq [G] is defined to be the subspace of the linear dual Uq(g)

∗ spanned by
the matrix coefficients of the finite dimensional irreducible representations V (µ), µ ∈ P+. For v ∈ V (µ), f ∈ V (µ)∗

the matrix coefficient cµf,v ∈ Uq(g)
∗ is defined by

cµf,v(X) = f (Xv).

The linear span of matrix coefficients of V (µ)

CV (µ)
= LinC{c

µ
f,v | v ∈ V (µ), f ∈ V (µ)∗} (9)

obtains a Uq(g)-bimodule structure by

(Y cµf,vZ)(X) = f (Z XYv) = cµf Z ,Yv(X). (10)

Here V (µ)∗ is considered as a right Uq(g)-module. Note that by construction

Cq [G] ∼=
⊕
µ∈P+

CV (µ) (11)

is a Hopf algebra and the pairing

Cq [G] ⊗Uq(g)→ C (12)

is nondegenerate.

3.2. Nilpotent and parabolic subalgebras

For S ⊂ π let Uq(lS) ⊂ Uq(g) denote the Hopf subalgebra generated by Ei , Fi , K j , K−1
j for all αi ∈ S and all j .

Moreover, let V− ⊂ Uq(g) denote the subalgebra generated by the elements of the set

{(ad k)Fi | k ∈ Uq(lS), αi 6∈ S}.

Analogously, let V+ ⊂ Uq(g) denote the subalgebra generated by the elements of the set

{(ad k)(Ei K−1
i ) | k ∈ Uq(lS), αi 6∈ S}.

As (ad Ei )F j = 0 = (ad Fi )(E j K−1
j ) for all i 6= j one has V− ⊂ Uq(n

−) and V+ ⊂ G+. By [11, Prop. 4.2]
multiplication gives isomorphisms

V− ⊗Uq(l
−

S )→ Uq(n
−), V+ ⊗Uq(l

+

S )→ G+

where Uq(l
−

S ) := Uq(n
−) ∩ Uq(lS) and Uq(l

+

S ) := G+ ∩ Uq(lS). Thus the triangular decomposition Uq(g) ∼=

Uq(n
−)⊗ G+ ⊗U 0 yields

Uq(g) ∼= V− ⊗Uq(l
−

S )⊗ V+ ⊗Uq(l
+

S )⊗U 0

∼= V− ⊗ V+ ⊗Uq(l
−

S )⊗Uq(l
+

S )⊗U 0

∼= V− ⊗ V+ ⊗Uq(lS). (13)

Here in the second line the isomorphism

Uq(l
−

S )⊗ V+→ V+ ⊗Uq(l
−

S ), k ⊗ v 7→ (ad k(1))v ⊗ k(2)

is used, and the last line uses the triangular decomposition of Uq(lS). In a similar manner one obtains

Uq(g) ∼= V+ ⊗ V− ⊗Uq(lS). (14)
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The parabolic subalgebra Uq(pS) ⊂ Uq(g) is defined by

Uq(pS) := 〈Ei , Ki , F j | αi ∈ π, α j ∈ S〉.

Note that Uq(pS) coincides with the subalgebra generated by Uq(lS) and V+. Thus by (13) multiplication yields
isomorphisms

V+ ⊗Uq(lS) ∼= Uq(pS), (15)
V− ⊗Uq(pS) ∼= Uq(g). (16)

4. Quantum generalized Verma modules

4.1. Notation

For λ ∈ P+S as in the classical case q = 1 let M(λ) denote the finite dimensional, irreducible Uq(lS)-module of
highest weight λ. Note that M(λ) can be turned into an Uq(pS)-module by setting Eiv = 0 for all generators Ei ,
αi 6∈ S, and v ∈ M(λ).

Definition 4.1. For λ ∈ P+S , define the quantum generalized Verma module V M(λ) by

V M(λ)
:= Uq(g)⊗Uq (pS) M(λ).

If S = ∅ and λ ∈ P we will write V λ
:= V M(λ).

Note that by (16) one has isomorphisms of U 0-modules V λ ∼= Uq(n
−) ⊗ Cλ and V M(λ) ∼= V− ⊗ M(λ) where Cλ

denotes the one-dimensional U 0-module of weight λ.
Note moreover that V M(λ)

η
∼= V M(λ)∗ . Indeed, let ξ−λ ∈ M(λ)∗ denote the up to scalar multiplication uniquely

determined element of weight−λ. Then 1⊗ξ−λ ∈ V M(λ)∗ is a cyclic vector and a set of relations determining V M(λ)∗

is given by

K±1
j (1⊗ ξ−λ) = q∓(λ,α j )1⊗ ξ−λ, E

(λ,α∨i )+1
i (1⊗ ξ−λ) = 0

for all αi ∈ S and for all j . The same relations hold for the cyclic vector 1⊗ vλ ∈ V M(λ)
η .

Remark. The notation used here slightly differs from the original notation in [14]. Recall that ρ denotes half the sum
of the positive roots and define

ρS :=
1
2

∑
α∈R+S

α.

Note that for all λ ∈ P one has

λ ∈ P+S ⇔ λ− ρ + ρS ∈ P+S .

Lepowsky considered modules obtained by twisted induction in the classical case q = 1 and defined V M(λ)
:=

U (g )⊗U (pS) M(λ− ρ + ρS). Translation between the two settings is straightforward.

Let λ ∈ P+S and let vλ ∈ M(λ) denote a vector of weight λ. For any Uq(g)-module homomorphism g : V M(λ)
→

V M(µ) there exists an element F ∈ Uq(n
−) such that g(1 ⊗ vλ) = F ⊗ vµ. Note that F is uniquely determined up

to addition of an element in the annihilator of 1⊗ vµ ∈ V M(µ). We will say that the homomorphism g is determined
by F .

4.2. The Bernstein–Gelfand–Gelfand resolution

We now briefly recall the quantum analogue of the Bernstein–Gelfand–Gelfand resolution. This construction has
been in detail considered in [4] for q not a root of unity.
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Fix a dominant integral weight µ ∈ P+. For all j = 0, . . . , dim(g /pS) define

C S
j :=

⊕
w∈W S , l(w)= j

V M(w.µ).

Note that V M(w.µ) is a highest weight module with highest weight w.µ. Therefore V M(w.µ) is a natural quotient of
Vw.µ.

As in [14, Section 4] one constructs Uq(g)-module maps ϕS
j : C S

j → C S
j−1 for all j = 1, . . . , dim(g /pS). More

explicitly, for all w ∈ W , fix an embedding Vw.µ
⊂ Vµ. Then for all w,w′ ∈ W with w ≤ w′ one has a fixed

embedding fw,w′ : Vw.µ
→ Vw′.µ.

A quadruple (w1, w2, w3, w4) of elements of W is called a square if w2 6= w3 and

w1 → w2 → w4, w1 → w3 → w4.

By [2, Lemma 10.4] to each arrow w1 → w2 (w1, w2 ∈ W ) one can assign a number s(w1, w2) = ±1 such that
for every square, the product of the numbers assigned to the four arrows occurring in it is −1. Let w,w′ ∈ W S such
that l(w) = l(w′) + 1. If w → w′ then let hw,w′ : V M(w.µ)

→ V M(w′.µ) denote the (standard) map induced by
the map

s(w,w′) fw,w′ : Vw.µ
→ Vw′.µ.

Otherwise, define hw,w′ = 0. The differential ϕS
j is now defined as the sum of all hw,w′ where l(w) = j = l(w′)+ 1.

Note moreover, that for µ ∈ P+ there exists a surjective map of Uq(g)-modules

εµ : C S
0 = Uq(g)⊗Uq (pS) M(µ)→ V (µ), u ⊗ vµ,M 7→ uvµ,V (17)

where vµ,M ∈ M(µ) and vµ,V ∈ V (µ) denote vectors of weight µ.

Theorem 4.2 ([4, Section 3.4]). The sequence

0 −→ C S
dim g /pS

ϕS
dim(g /pS )
−→ · · ·

ϕS
1
−→ C S

0
εµ
−→ V (µ) −→ 0 (18)

is exact and ϕS
j (V

M(w.µ)) 6= 0 for all j = 1, . . . , dim(g /pS) and all w ∈ W S with l(w) = j .

Remark 4.3. In the quantum case the fact that forw→ w′ the standard map hw,w′ : V M(w.µ)
→ V M(w′.µ) is nonzero

has not been explicitly stated in [4]. However, this property can be verified analogously to formula (1) in the proof
of [13, Lemma 9.2.14]. The necessary fact that for µ, λ ∈ h∗ the simple module V (µ) is a subquotient of V λ if and
only if Hom(Vµ, V λ) 6= 0 follows as in [17] after translation of [19, Sections 1–6] to the quantum case.

By construction there exists yµ
w,w′
∈ Uq(n

−) such that fw,w′(u ⊗ vw.µ) = uyµ
w,w′
⊗ vw′.µ. Thus in terms of the

elements yµ
w,w′
∈ Uq(n

−) the map hw,w′ is given by

hw,w′(u ⊗ vw.µ) = s(w,w′)uyµ
w,w′
⊗ vw′.µ.

In later considerations the main focus will be on the case µ = 0. In this case define yw,w′ := s(w,w′)y0
w,w′
∈ Uq(n

−).

5. Uq(g)-modules induced by Uq(lS)-modules

5.1. Notation

Definition 5.1. For λ ∈ P+S , define

W M(λ)
:= Uq(g)⊗Uq (lS) M(λ).

If S = ∅ and λ ∈ P we will write W λ
:= W M(λ).
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Note that multiplication yields isomorphisms W λ ∼= Uq(n
−) ⊗ Uq(n

+) ⊗ Cλ and W M(λ) ∼= V− ⊗ V+ ⊗ M(λ) of
U 0-modules. Note moreover that W M(λ) is in general not a highest weight module. In analogy to the observation after
Definition 4.1 one obtains W M(λ)

η
∼= W M(λ)∗ .

5.2. The functor : V →W

By Definitions 4.1 and 5.1 there exists a natural surjective Uq(g)-module homomorphism

Φλ : W M(λ)
→ V M(λ).

Proposition 5.2. For any Uq(g)-module homomorphism g : V M(λ)
→ V M(µ) there exists a uniquely determined

Uq(g)-module homomorphism g : W M(λ)
→ W M(µ) such that the diagram

W M(λ)
g
//

Φλ

��

W M(µ)

Φµ

��
V M(λ)

g // V M(µ)

(19)

commutes.

Proof. Assume that g is determined by F ∈ Uq(n
−) as in the end of Section 4.1. To obtain commutativity of the

diagram (19) one has to define g(1 ⊗ vλ) = F ⊗ vµ. We have to check that g is well defined. To this end consider
0 = u ⊗ vλ ∈ W M(λ), or equivalently u ∈ Uq(g)AnnUq (lS)(vλ). We have to show that uF ∈ Uq(g)AnnUq (lS)(vµ).

Using the decomposition (14) and the fact that V−Uq(lS)F ⊂ V−Uq(lS) one may assume that u ∈ V−Uq(lS). The
relation g(Φλ(u ⊗ vλ)) = 0 implies uF ∈ Uq(g)AnnUq (pS)(vµ). Hence

uF ∈ Uq(g)AnnUq (pS)(vµ) ∩ V−Uq(lS)

(16)
= V−(AnnUq (pS)(vµ) ∩Uq(lS)) = V−AnnUq (lS)(vµ). �

Let V andW denote the full subcategory of the category of Uq(g)-modules whose objects are finite direct sums of
Uq(g)-modules V M(λ) and W M(λ), where λ ∈ P+S , respectively. By Proposition 5.2 there exists a canonical functor
: V →W such that

n⊕
i=1

V M(λi ) =

n⊕
i=1

W M(λi ).

Proposition 5.3. The functor : V →W is exact.

Proof. Recall that V M(λ) ∼= V− ⊗ M(λ) and W M(λ) ∼= V+ ⊗ V− ⊗ M(λ). With respect to these decompositions one
gets for any V1, V2 ∈ V and any g : V1 → V2 the relation g = IdV+ ⊗ g. Hence preserves exactness. �

Let Uq(p
op
S ) ⊂ Uq(g) denote the subalgebra generated by the elements E j , Ki , Fi for αi ∈ π , α j ∈ S. For any

µ ∈ P+ define a map

εµ : W
M(µ)
= Uq(g)⊗Uq (lS) M(µ)→ Uq(g)⊗Uq (p

op
S )

V (µ)

u ⊗ vµ,M 7→ u ⊗ vµ,V

where as in (17) the symbols vµ,M ∈ M(µ) and vµ,V ∈ V (µ) denote vectors of weight µ. Then by the same argument
as in the proof of Proposition 5.3 the BGG resolution (18) induces an exact sequence

0 −→ C S
dim g /pS

ϕS
dim(g /pS )
−→ · · ·

ϕS
1
−→ C S

0

εµ
−→ Uq(g)⊗Uq (p

op
S )

V (µ) −→ 0. (20)
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5.3. Homomorphisms and estimates

Note that for µ, ν ∈ P+S the left Uq(lS)-module M(µ) ⊗ M(ν)∗ is generated by one element vµ ⊗ ξ−ν where
vµ ∈ M(µ) and ξ−ν ∈ M(ν)∗ denote a highest and a lowest weight vector, respectively. A complete set of relations
for M(µ)⊗ M(ν)∗ is given by

E
(ν,α∨i )+1
i (vµ ⊗ ξ−ν) = 0,

F
(µ,α∨i )+1
i (vµ ⊗ ξ−ν) = 0,

(K j − q(µ−ν,α j ))(vµ ⊗ ξ−ν) = 0

(21)

where αi ∈ S and α j ∈ π . This follows for instance from [10, Prop. 5.2] using the fact that the module generated by
one element and the relations (21) is integrable and the generator is a cyclic weight vector. In Section 7.4 we will be
interested in homomorphisms between Uq(g)-modules induced by Uq(lS)-modules M(µ) ⊗ M(ν)∗. Here we derive
well definedness and some properties of such maps.

For w,w′ ∈ W S , w→ w′, and µ ∈ P+ recall the definition of the element yµ
w,w′
∈ Uq(n

−) from Section 4.2 and
define xµ

w,w′
:= η(yµ

w,w′
). Define Uq(lS)-module homomorphisms

θ2 : M(w.µ)→ V M(w′.µ) ∼= V+V− ⊗ M(w′.µ),

uvw.µ 7→ uyµ
w,w′
⊗ vw′.µ,

θ2 : M(w.µ)∗→ V M(w′.µ)∗ ∼= V−V+ ⊗ M(w′.µ)∗,

uξ−w.µ 7→ uxµ
w,w′
⊗ ξ−w′.µ.

Proposition 5.4. Let w,w′ ∈ W S , w → w′, µ ∈ P+, and ν ∈ P+S . There are uniquely determined injective Uq(lS)-
module homomorphisms

θ1 : M(w.µ)⊗ M(ν)∗→ Uq(g)⊗Uq (lS)(M(w
′.µ)⊗ M(ν)∗),

θ1 : M(ν)⊗ M(w.µ)∗→ Uq(g)⊗Uq (lS)(M(ν)⊗ M(w′.µ)∗)

such that

θ1(vw.µ ⊗ ξ−ν) = yµ
w,w′
⊗ (vw′.µ ⊗ ξ−ν), (22)

θ1(vν ⊗ ξ−w.µ) = xµ
w,w′
⊗ (vν ⊗ ξ−w′.µ). (23)

Moreover, in V+V− ⊗ M(w′.µ)⊗ M(ν)∗ one has for all weight vectors v ∈ M(w.µ), ξ ∈ M(ν)∗

θ1(v ⊗ ξ) ∈ θ2(v)⊗ ξ +
∑

ζ<wt(ξ)

V− ⊗ M(w′.µ)⊗ M(ν)∗ζ . (24)

Similarly, in V−V+ ⊗ M(ν)⊗ M(w′.µ)∗ one has for all weight vectors v ∈ M(ν), ξ ∈ M(w.µ)∗

θ1(v ⊗ ξ) ∈ P23(θ2(ξ)⊗ v)+
∑

ζ>wt(v)

V+ ⊗ M(ν)ζ ⊗ M(w′.µ)∗ (25)

where P23 denotes the flip of the second and the third tensor factor.

Proof. The maps θ1 and θ1 are uniquely determined by formulae (22) and (23), respectively. It remains to verify that
they are well defined and injective. Fix αi ∈ S and let Ui ⊂ Uq(g) denote the subalgebra isomorphic to Uq(sl2)

generated by Ei , Fi , and K±1
i . Note that

F
(w.µ,α∨i )+1
i yµ

w,w′
⊗ (vw′.µ ⊗ ξ−ν) = 0 (26)

for all αi ∈ S. Indeed, as the standard map hw,w′ is well defined one obtains

F
(w.µ,α∨i )+1
i yµ

w,w′
∈ (Uq(g)AnnUq (lS)vw′.µ) ∩Uq(n

−).

Hence (26) follows from the fact that ξ−ν is a lowest weight vector.
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Note that Uq(g)⊗Uq (lS)(M(w.µ) ⊗ M(ν)∗) is an integrable Uq(lS)-module. Hence the weight vector yµ
w,w′
⊗

(vw′.µ ⊗ ξ−ν) can be written as a sum of weight vectors of weight w.µ − ν which generate pairwise nonisomorphic
irreducible Ui -modules. By (26) among these irreducible Ui -modules there is one of lowest weight w.µ − ν −
(w.µ, α∨i )αi and all other Ui -modules generated by yµ

w,w′
⊗vw′.µ⊗ξ−ν have larger lowest weight. The corresponding

highest weight with respect to Ui is ν − w.µ+ (w.µ, α∨i )αi = w.µ− ν + (ν, α
∨

i )αi and hence

E
(ν,α∨i )+1
i yµ

w,w′
⊗ (vw′.µ ⊗ ξ−ν) = 0.

In view of (21) this proves that θ1 is well defined. The injectivity of θ1 will follow from (24).
To prove (24) note that for any weight vectors v ∈ M(w.µ)λ and ξ ∈ M(ν)∗

λ′
there exist E ∈ Uq(l

+

S )λ′+ν and
F ∈ Uq(l

−

S )w.µ−λ such that v = Fvw.µ and ξ = Eξ−ν . Moreover, in the Uq(lS)-module M(w.µ)⊗ M(ν)∗ one has

v ⊗ ξ ∈ F E(vw.µ ⊗ ξ−ν)+
∑

ζ<wt(ξ)

M(w.µ)⊗ M(ν)∗ζ .

Hence one obtains by induction on wt(ξ)

θ1(v ⊗ ξ) ∈ F Eyµ
w,w′
⊗ (vw′.µ ⊗ ξ−ν)+

∑
ζ<wt(ξ)

V− ⊗ M(w.µ)⊗ M(ν)∗ζ

= Fyµ
w,w′
⊗ (vw′.µ ⊗ ξ)+

∑
ζ<wt(ξ)

V− ⊗ M(w.µ)⊗ M(ν)∗ζ

= θ2(v)⊗ ξ +
∑

ζ<wt(ξ)

V− ⊗ M(w.µ)⊗ M(ν)∗ζ .

The well definedness and the injectivity of θ1 follow from the corresponding properties of θ1 and the relations

(M(w′.µ)⊗ M(ν)∗)η ∼= M(ν)⊗ M(w′.µ)∗,(
Uq(g)⊗Uq (lS)(M(w

′.µ)⊗ M(ν)∗)
)
η

∼= Uq(g)⊗Uq (lS)(M(ν)⊗ M(w′.µ)∗).

Formula (25) is proved in the same manner as (24). �

For any µ, ν ∈ P+S we define

W (µ, ν) := Uq(g)⊗Uq (lS)(M(µ)⊗ M(ν)∗).

Using the isomorphism

W (µ, ν) ∼= V+V− ⊗ M(µ)⊗ M(ν)∗ ∼= V−V+ ⊗ M(µ)⊗ M(ν)∗

we define two filtration on W (µ, ν) as follows

Fk
1 W (µ, ν) = LinC{u ⊗ v ⊗ ξ | u ∈ V−V+, v ∈ M(µ)λ, ξ ∈ M(ν)∗, ht(µ− λ) ≤ k}, (27)

Fk
2 W (µ, ν) = LinC{u ⊗ v ⊗ ξ | u ∈ V+V−, v ∈ M(µ), ξ ∈ M(ν)∗λ, ht(λ+ ν) ≤ k}. (28)

Corollary 5.5. Assume that w,w′ ∈ W S , w→ w′, µ ∈ P+, ν ∈ P+S . The following relation holds in W (w′.µ, ν)

Uq(g)y
µ

w,w′
⊗ (vw′.µ ⊗ ξ−ν) ∩ Fk

2 W (w′.µ, ν)

⊆

∑
ht(β)≤k

V+Uq(n
−)Uq(l

+

S )β yµ
w,w′
⊗ (vw′.µ ⊗ ξ−ν).

Similarly one has in W (ν, w′.µ) the relation

Uq(g)x
µ

w,w′
⊗ (vν ⊗ ξ−w′.µ) ∩ Fk

1 W (w′.µ, ν)

⊆

∑
ht(β)≤k

V−Uq(n
+)Uq(l

−

S )−βxµ
w,w′
⊗ (vν ⊗ ξ−w′.µ).
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Proof. Proposition 5.4 implies the following equalities.

V+V−θ1(M(w.µ)⊗ M(ν)∗) ∩ Fk
2 W (w′.µ, ν)

(24)
= V+V−θ1

( ∑
ht(α+ν)≤k

M(w.µ)⊗ M(ν)∗α

)

= V+V−θ1

( ∑
ht(β)≤k

Uq(l
−

S )Uq(l
+

S )β(vw.µ ⊗ ξ−ν)

)
=

∑
ht(β)≤k

V+Uq(n
−)Uq(l

+

S )β yµ
w,w′
⊗ (vw.µ ⊗ ξ−ν).

The second relation is verified analogously. �

Corollary 5.6. Assume that w,w′ ∈ W S , w→ w′, ν ∈ P+S , and x ∈ Uq(n
+). Then in W (w′.0, ν) the relation

[yw,w′ , x] ⊗ (vw′.0 ⊗ ξ−ν) 6∈
∑

w′′∈W S ,
w′′→w′

Uq(g)yw′′,w′ ⊗ (vw′.0 ⊗ ξ−ν) \ {0} (29)

holds. Similarly, for y ∈ Uq(n
−) the relation

[xw,w′ , y] ⊗ (vν ⊗ ξ−w′.0) 6∈
∑

w′′∈W S ,
w′′→w′

Uq(g)xw′′,w′ ⊗ (vν ⊗ ξ−w′.0) \ {0} (30)

holds in W (ν, w′.0)

Proof. Recall that yw,w′ ∈ Uq(n
−)w.0−w′.0. Hence with respect to the decomposition

Uq(g) ∼= V+ ⊗Uq(n
−)⊗Uq(l

+

S )⊗U 0 (31)

one obtains using (6)

[yw,w′ , x] ∈
∑

β>w.0−w′.0

V+ ⊗Uq(n
−)β ⊗Uq(l

+

S )⊗U 0.

As U 0 acts diagonally and vw′.0 is a highest weight vector for the action of Uq(lS) this implies

[yw,w′ , x] ⊗ (vw′.0 ⊗ ξ−ν) ∈
∑

α+β>w.0

V+V−,α ⊗ M(w′.0)β ⊗ M(ν)∗. (32)

On the other hand, for any k ∈ N0, Corollary 5.5 implies∑
w′′∈W S ,
w′′→w′

Uq(g)yw′′,w′ ⊗ (vw′.0 ⊗ ξ−ν) ∩ Fk
2 W (w′.0, ν)

⊆

∑
w′′∈W S ,
w′′→w′

∑
ht(γ )≤k

V+Uq(n
−)Uq(l

+

S )γ yw′′,w′ ⊗ (vw′.0 ⊗ ξ−ν)

⊆

∑
w′′∈W S ,
w′′→w′

∑
ht(γ+ν)≤k

V+Uq(n
−)yw′′,w′ ⊗ (vw′.0 ⊗ M(ν)∗γ )+ F

k−1
2 W (w′.0, ν)

⊆

∑
w′′∈W S ,
w′′→w′

∑
α+β≤w′′.0

V+V−,α ⊗ M(w′.0)β ⊗ M(ν)∗ + Fk−1
2 W (w′.0, ν). (33)

Choose now k ∈ N such that [yw,w′ , x]⊗ (vw′.0⊗ ξ−ν) ∈ Fk
2 W (w′.0, ν)\Fk−1

2 W (w′.0, ν) and assume that (29) does
not hold. Then (32) and (33) imply that there existsw′′ ∈ W S ,w′′→ w′ such thatw′′.0 > w.0. This is a contradiction
to Corollary 2.3(1) and (2). Hence (29) holds. Relation (30) is verified analogously. �



2330 I. Heckenberger, S. Kolb / Journal of Geometry and Physics 57 (2007) 2316–2344

6. Categorical equivalence

From now on we will write A = Cq [G] and

B = {b ∈ A | b(1)b(2)(k) = ε(k)b for all k ∈ Uq(lS)}. (34)

6.1. Takeuchi’s categorical equivalence

In this subsection Takeuchi’s categorical equivalence [23] is recalled in the present special setting. Note that B ⊂ A
is a left coideal subalgebra of the Hopf algebra A. Thus←−A := A/B+A where B+ = {b ∈ B | ε(b) = 0} is a right
A-module coalgebra. Moreover, by [16, Thm. 2.2(2)] A is a faithfully flat right B-module. It was shown in the proof
of [16, Thm. 2.2(1), (2)] that←−A is equal to the image ofA under the restriction map Uq(g)

◦
→ Uq(lS)

◦ of dual Hopf
algebras. Therefore the pairing

〈·, ·〉 : Uq(lS)×
←−A → C (35)

is nondegenerate. Let
←−AM denote the category of finite dimensional left←−A -comodules and let MUq (lS) denote the

category of right Uq(lS)-modules which are isomorphic to a finite direct sum of modules of the form M(λ)∗, λ ∈ P+S .
The pairing (35) induces a functor

Ξ :
←−AM→MUq (lS) (36)

where for V ∈
←−AM the right Uq(lS)-module structure on Ξ (V ) := V is given by v C k = 〈k, v(−1)〉v(0) for all

k ∈ Uq(lS), v ∈ V .

Proposition 6.1. The functor Ξ is an equivalence of categories.

Proof. By the nondegeneracy of the pairing (35) two objects V,W ∈
←−AM are isomorphic if and only if the Uq(lS)-

modules Ξ (V ) and Ξ (W ) are isomorphic. It remains to show that all objects of MUq (lS) lie in the image of Ξ . To
this end, consider the right Uq(lS)-module M(λ)∗, λ ∈ P S

+. By Lemma 2.1 one can find µ ∈ P+ and an embedding
of Uq(lS)-modules M(λ) ↪→ V (µ). Then V (µ)∗ is a right Uq(g)-module, or equivalently by definition of A, a
left A-comodule. Projection onto ←−A endows V (µ)∗ with a left ←−A -comodule structure. As V (µ) decomposes into
a direct sum of irreducible Uq(lS)-modules the Uq(lS)-module M(λ)∗ can be viewed as a direct summand of the
Uq(lS)-module V (µ)∗. As the pairing (35) is nondegenerate the Uq(lS)-direct summand M(λ)∗ ⊂ V (µ)∗ is an←−A -
subcomodule. By construction, application of Ξ to this←−A -subcomodule yields the right Uq(lS)-module M(λ)∗. �

Recall that for any coalgebra C the cotensor product of a right C-comodule P and a left C-comodule Q is defined
by

P�C Q :=

{∑
i

pi ⊗ qi ∈ P ⊗ Q

∣∣∣∣∣∑
i

pi(0) ⊗ pi(1) ⊗ qi =
∑

i

pi ⊗ qi(−1) ⊗ qi(0)

}
.

Let ABM denote the category of left A-covariant left B-modules. There exist functors

Φ : ABM→
←−AM, Φ(Γ ) = Γ/B+Γ , (37)

Ψ :
←−AM→ A

BM, Ψ(V ) = A�←−A V . (38)

Here for any Γ ∈ ABM the left←−A -comodule structure on Γ/B+Γ is induced by the left A-comodule structure of Γ .
Moreover, the left B-module and the left A-comodule structures of A�←−A V are defined on the first tensor factor.

Theorem 6.2 ([23, Theorem 1]). With the notions as above Φ and Ψ are mutually inverse equivalences of categories.
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By the above theorem and Proposition 6.1 in order to show that two A-covariant B-modules coincide, it suffices
to show that the corresponding Uq(lS)-modules coincide. This method will be applied to show that the differential
graded algebra which will be constructed in Section 7 coincides with the q-deformed de Rham complex constructed
in [7].

A slight refinement of Theorem 6.2 also takes into account possible right B-modules structures. Let ABMB and
←−AMB denote the categories of left A-covariant B-bimodules and of left←−A -covariant right B-modules, respectively.

The functors Φ and Ψ restrict to functors ΦB : ABMB →
←−AMB and ΨB :

←−AMB →
A
BMB, respectively. Here the

right B-module structure on ΦB(Γ ) = Γ/B+Γ comes from the right B-module structure of Γ . The right B-module
structure on ΨB(V ) = A�←−A V is given by (

∑
i pi ⊗ qi )b =

∑
i pi b(−1) ⊗ qi b(0).

Corollary 6.3. The functors ΦB and ΨB are mutually inverse equivalences of categories.

6.2. Locally finite duals of Uq(g)-modules induced by Uq(lS)-modules

For λ ∈ P+S define

Ω(λ) := { f ∈ (W M(λ))∗ | dim( f Uq(g)) <∞}.

Here the dual vector space (W M(λ))∗ of the left Uq(g)-module W M(λ) is endowed with a right Uq(g)-module structure
in the usual way by ( f u)(v) := f (uv) for all f ∈ (W M(λ))∗, u ∈ Uq(g), v ∈ W M(λ). One has a canonical inclusion

c : Ω(λ)→ Uq(g)
∗, f 7→ c f := (u 7→ f (u ⊗ vλ)).

We will freely use the inclusion c to consider Ω(λ) as a subset of Uq(g)
∗.

Lemma 6.4. For all λ ∈ P+S one has Ω(λ) ⊂ A. In particular one has Ω(0) = B. Moreover, Ω(λ) is a left A-
covariant B-bimodule.

Proof. The dual Hopf algebra Uq(g)
◦ of Uq(g) satisfies

Uq(g)
◦
= {a ∈ Uq(g)

∗
| dim(aUq(g)) <∞}. (39)

Thus by definition Ω(λ) ⊂ Uq(g)
◦. Moreover, Uq(g)

◦ contains A as the linear span of the matrix coefficients of the
representations V (µ), µ ∈ P+. Recall that Uq(g) is semisimple and any irreducible finite dimensional representation
of Uq(g) can be obtained by tensoring some V (µ) with a one-dimensional representation Dν , ν ∈ {−1, 1}r , given
by Kiv = νiv for all v ∈ Dν . As λ ∈ P+S the finite dimensional Uq(g)-module generated by c f for f ∈ Ω(λ)
decomposes into a direct sum of irreducible representations isomorphic to V (µ), µ ∈ P+. Thus one gets Ω(λ) ⊂ A.

Note that U := W M(0) is a left Uq(g)-module coalgebra. Let : Uq(g) → U denote the canonical projection
u 7→ u ⊗ v0. Note that W M(λ) is a right and left U -comodule, where the coaction is given by

∆L(u ⊗ vλ) = u(1) ⊗ u(2) ⊗ vλ ∈ U ⊗W M(λ),

∆R(u ⊗ vλ) = u(1) ⊗ vλ ⊗ u(2) ∈ W M(λ)
⊗U .

These coactions are compatible with each other and with the Uq(g)-module structure of W M(λ). They induce the
desired B-bimodule structure on Ω(λ). �

The above lemma implies in particular Ω(λ) ∈ ABM. Thus one can apply the functor Φ from the previous subsection.
The following proposition states that up to dualization Ω is the inverse of Ξ ◦ Φ.

Proposition 6.5. For all λ ∈ P+S one has

Ξ (Φ(Ω(λ))) = M(λ)∗.
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Proof. Note first that by definition of the left B-module structure of Ω(λ) one has (B+Ω(λ))(1 ⊗ M(λ)) = 0. Thus
there exists a well defined pairing

〈·, ·〉λ : Ω(λ)/(B+Ω(λ))× M(λ) −→ C. (40)

The pairing 〈·, ·〉λ induces a map of right Uq(lS)-modules

ϕ : Ξ (Φ(Ω(λ)))→ M(λ)∗.

As Ω(λ) ⊂ A the induced map of quotients

i : Ω(λ)/(B+Ω(λ))→ A/B+A

is also injective by Theorem 6.2. Moreover, let π denote the surjection

π : Uq(lS)→ M(λ), k 7→ kvλ.

Then the pairings (35) and (40) satisfy

〈 f , π(k)〉λ = 〈k, i( f )〉

for all f ∈ Ω(λ)/(B+Ω(λ)), k ∈ Uq(lS). As the pairing (35) is nondegenerate and i is injective this implies that ϕ
is injective. By Theorem 6.2 as M(λ) is irreducible it remains to show that Ω(λ) 6= 0. To this end apply Lemma 2.1
to pick µ ∈ P+ such that there exists an embedding M(λ) ↪→ V (µ) of Uq(lS)-modules. Let v denote the image of
vλ under this embedding. Pick g ∈ V (µ)∗ such that g(v) 6= 0 and let cg,v ∈ Cq [G] denote the corresponding matrix
coefficient. Then there is an element f ∈ Ω(λ) \ {0} defined by f (u ⊗ vλ) = cg,v(u). �

7. q-Differential forms as locally finite duals

From now on we restrict to the case of irreducible flag manifolds G/PS . Thus S = π \ {αs} where αs occurs in
each positive root of g with multiplicity at most one. Let again B ⊂ Cq [G] be the left coideal subalgebra defined by
(34).

7.1. q-Differential forms for irreducible flag manifolds

The aim of this section is to recall the structure of the canonical differential graded algebra over B constructed and
investigated in [7,6].

To this end recall that a first order differential calculus (FODC) over B is a B-bimodule Γ together with a C-linear
map

d : B→ Γ

such that Γ = LinC{a db c | a, b, c ∈ B} and d satisfies the Leibniz rule

d(ab) = adb + dab.

If Γ possesses the structure of a left A-comodule

∆Γ : Γ → A⊗ Γ

such that

∆Γ (adbc) = (∆Ba)((Id⊗ d)∆Bb)(∆Bc)

then Γ is called (left) covariant. A covariant FODC Γ 6= {0} over B is called irreducible if it does not possess any
nontrivial quotient (by a left covariant B-bimodule). The dimension of a covariant FODC Γ 6= {0} over B is defined
by dim Γ = dimC Γ/B+Γ . Any finite dimensional covariant FODC over B is uniquely determined by its so called
quantum tangent space

TΓ = { f ∈ Γ ∗| f |B+Γ = 0},
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(see [5, Lemma 6], [7, Remark 2.4]). The quantum tangent space can be considered as a subset of the dual coalgebra
B◦ of B via the map f 7→ (b 7→ f (db)). It is one of the main results of [6] that there exist precisely two finite
dimensional irreducible covariant FODC (Γ∂ , ∂) and (Γ∂ , ∂) over B. The quantum tangent spaces of the FODC Γ∂
and Γ∂ [7, Propositions 3.3, 3.4] are given by

T∂ = (ad Uq(lS))Fs, T∂ = (ad Uq(lS))Es, (41)

respectively, considered as subspaces of B◦ via the pairing (12). Moreover, the FODC Γ∂ and Γ∂ satisfy

B+Γ∂ = Γ∂B+, B+Γ∂ = Γ∂B
+. (42)

The direct sum Γd = Γ∂ ⊕ Γ∂ with the map d = ∂ ⊕ ∂ is a covariant FODC which is a q-analogue of the Kähler
differentials over the affine algebraic variety G/L S .

Consult [7, Section 2.3.2] for the definition of the universal differential calculus of a FODC (Γ , d). Let Γ∧∂,u, Γ∧
∂,u

,

and Γ∧d,u denote the universal differential calculi of the FODC (Γ∂ , ∂), (Γ∂ , ∂), and (Γd, d), respectively. The following
theorem is contained in [7, Propositions 3.6, 3.7, 3.11].

Theorem 7.1. (i) The multiplicity of weight spaces of the left Uq(lS)-module (Ξ ◦ Φ(Γ∧k
∂,u))

∗
= (Γ∧k

∂,u/B
+Γ∧k

∂,u)
∗

coincides with the multiplicity of weight spaces of the left U (lS)-module Λk(g /pS). In particular

dimC(Γ∧k
∂,u/B

+Γ∧k
∂,u) =

(
dimC(g /pS)

k

)
.

(ii) The multiplicity of weight spaces of the left Uq(lS)-module (Ξ ◦Φ(Γ∧k
∂,u
))∗ = (Γ∧k

∂,u
/B+Γ∧k

∂,u
)∗ coincides with the

multiplicity of weight spaces of the left U (lS)-module Λk(g /pS)
∗. In particular

dimC(Γ∧k
∂,u
/B+Γ∧k

∂,u
) =

(
dimC(g /pS)

k

)
.

(iii) For all k ∈ N0 the canonical map⊕
i+ j=k

Γ∧i
∂,u/B

+Γ∧i
∂,u ⊗ Γ∧ j

∂,u
/B+Γ∧ j

∂,u
→ Γ∧k

d,u/B
+Γ∧k

d,u (43)

is an isomorphism. In particular

dim Γ∧k
d,u =

(
2 dimC(g /pS)

k

)
.

The above theorem implies in particular, that Φ(Γ∧2 dim(g /pS)
d,u ) is the trivial one-dimensional left ←−A -comodule.

Moreover, by (42) the right B-action on Φ(Γ∧2 dim(g /pS)
d,u ) is trivial, i.e. γ b = ε(b)γ for all b ∈ B, γ ∈

Φ(Γ∧2 dim(g /pS)
d,u ). Hence by the categorical equivalence in Corollary 6.3 the covariant B-bimodules Γ∧2 dim(g /pS)

d,u
and B are isomorphic. This observation implies the following corollary.

Corollary 7.2. Γ∧2 dim(g /pS)
d,u is a free left and right B-module generated by one left Cq [G]-coinvariant element

ωvol ∈ Γ∧2 dim(g /pS)
d,u satisfying ωvol b = bωvol for all b ∈ B.

7.2. The differential calculus Γ∧∂,u

One is now in a position to construct the differential graded algebras Γ∧∂,u, Γ∧
∂,u

, and Γ∧d,u from [7] as locally finite
duals of BGG-like sequences of Uq(g)-modules induced by Uq(lS)-modules. We begin with Γ∧∂,u. Consider the BGG
resolution

C S
∗,0 : 0 −→ C S

dim g /pS ,0

ϕS
dim(g /pS )
−→ · · ·

ϕS
1
−→ C S

0,0
εµ
−→ V (0) −→ 0, (44)
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of the trivial Uq(g)-module V (0), the corresponding sequence (20) obtained by applying the functor

C S
∗,0 : 0 −→ C S

dim g /pS ,0

ϕS
dim(g /pS )
−→ · · ·

ϕS
1
−→ C S

0,0

εµ
−→ Uq(g)⊗Uq (p

op
S )

V (0) −→ 0,

and its locally finite dual

Ω∗,0 : 0←− Ωdim g /pS ,0
∂dim(g /pS )
←− · · ·

∂1
←− Ω0,0 ∼= B←− C←− 0,

where

Ωn,0 ∼=
⊕

w∈W S , l(w)=n

Ω(w.0).

Recall from Section 4.2 that the differentials of the complexes C S
∗,0 and C S

∗,0 are given in terms of elements
yw,w′ ∈ Uq(n

−) where w,w′ ∈ W S and w → w′. In the case of irreducible flag manifolds the simple reflection
ss corresponding to αs is the only element in W S of length one. Note that ss .0 = −αs . Thus the differential
ϕ1 : V M(−αs ) → V M(0) is determined by yss ,e = Fs up to multiplication by a nonzero factor. The corresponding
differential

∂1 : B ∼= Ω0,0
→ Ω(−αs) ∼= Ω1,0

satisfies the Leibniz rule. Indeed, for all a, b ∈ B, u ∈ Uq(g) one has

∂1(ab)(u ⊗ v−αs ) = (ab)(uFs ⊗ v0)

= a(u(1)Fs ⊗ v0)b(u(2) ⊗ v0)+ a(u(1)K−1
s ⊗ v0)b(u(2)Fs ⊗ v0)

= (∂1(a)b + a∂1(b))(u ⊗ v−αs ).

Lemma 7.3. (∂1 : B→ Ω1,0) is a covariant FODC isomorphic to (∂ : B→ Γ∂).

Proof. Recall from (41) that T∂ is an irreducible Uq(lS)-module of highest weight −αs . Taking duals one obtains that
M(−αs)

∗ is isomorphic to Γ∂/B+Γ∂ as a right Uq(lS)-module. Proposition 6.5 and the categorical equivalence now
imply that Ω1,0 ∼= Ω(−αs) is an A-covariant B-bimodule isomorphic to Γ∂ .

As M(−αs) is an irreducible Uq(lS)-module it remains to check that ∂1 6= 0. This is a special case of the following
lemma which is proved independently of the above claim. �

Lemma 7.4. For all n ∈ N0 the map

ψn : B ⊗ Ωn,0
→ Ωn+1,0, b ⊗ ω 7→ b ∂n+1ω

is surjective.

Proof. It suffices to show that for any w,w′ ∈ W S such that w→ w′ one has

yw,w′ 6∈ Uq(g)Uq(lS)
+ (45)

where Uq(lS)
+
= ker ε ∩ Uq(lS) denotes the augmentation ideal of Uq(lS). Indeed, choose f ∈ Ω(w′.0) such that

f (1⊗ vw′.0) 6= 0. Then for all b ∈ B one has

(∂n+1(b f ))(1⊗ vw.0) = b(yw,w′(1)) f (yw,w′(2) ⊗ vw′.0).

Since B separates U = Uq(g)/Uq(g)Uq(lS)
+ [6, Prop. 6.1] and yw,w′ 6∈ Uq(g)Uq(lS)

+ by Assumption (45) and
yw,w′ ∈ Uq(n

−), one can choose b ∈ B such that

b(yw,w′(1))yw,w′(2) = 1.

By assumption on f this implies

∂n+1(b f )|W M(w.0) 6= 0. (46)
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By the categorical equivalence and Proposition 6.5 the covariant B-module Ωn+1,0 contains any irreducible covariant
B-submodule with multiplicity at most one. Since Imψn is a covariant left B-module relation (46) implies Ω(w.0) ⊂
Imψn .

It remains to verify (45). Assume on the contrary that yw,w′ ∈ V−Uq(l
−

S )
+ where Uq(l

−

S )
+
= ker ε∩Uq(l

−

S ). Then
yw,w′ ⊗ vw′.0 ∈ V−⊗Uq(l

−

S )
+vw′.0 ⊂ V M(w′.0) is nonzero because by Remark 4.3 the standard map does not vanish.

Since (ad Uq(lS))V− = V− and M(w′.0) is an irreducible Uq(lS)-module there exists Ei , where i 6= s, such that
Ei yw,w′ ⊗ vw′.0 6= 0. This is a contradiction to hw,w′(Ei ⊗ vw.0) = 0. �

By Lemma 7.3 one has Ω1,0
= LinC{a ∂1b | a, b ∈ B}. Define a map

Z : Ω1,0
⊗B Ωn,0

→ Ωn+1,0

(a ∂1b)⊗ ω 7→ a ∂1b Z ω := a ∂n+1(bω)− ab ∂n+1ω.
(47)

Lemma 7.5. The map Z is well defined.

Proof. Recall from the last statement of Corollary 2.3 that yw,w′ ∈ Uq(n
−)−β where ωs(β) = 1. Therefore

(−⊗ Id)∆yw,w′ − 1⊗ yw,w′ ∈ Uq(lS)Fs ⊗Uq(lS) ⊂ U ⊗Uq(g) (48)

where as before U = Uq(g)/Uq(g)Uq(lS)
+. To prove that Z is well defined consider ai , bi ∈ B such that∑

i ai ∂1bi = 0 or equivalently∑
i

ai (u(1))bi (u(2)Fs) = 0 ∀u ∈ Uq(g). (49)

Since ai (ux) = ai (u)ε(x) for all u ∈ Uq(g), x ∈ Uq(lS) formula (49) is equivalent to∑
i

ai (u(1))bi (u(2)x Fs) = 0 ∀u ∈ Uq(g), x ∈ Uq(lS). (50)

Then for all ω ∈ Ωn,0 and all u ∈ Uq(g) one has∑
i

(ai∂n+1(biω)− ai bi∂n+1ω)(u ⊗ vw.0)

=

∑
i

ai (u(1))

[
(biω)

(∑
w′

u(2)yw,w′ ⊗ vw′.0

)
− bi (u(2))ω

(∑
w′

u(3)yw,w′ ⊗ vw′.0

)]
=

∑
i

ai (u(1))
∑
w′

bi (u(2)y+w,w′(1))ω(u(3)yw,w′(2) ⊗ vw′.0) = 0

where y+ = y − ε(y) and the last equation follows from (48) and (50). Thus Z : Ω1,0
× Ωn,0

→ Ωn+1,0 is well
defined. Moreover, by definition for a, b ∈ B and ω ∈ Ωn,0 one has

((∂1b)a) Z ω = (∂1(ba)− b∂1a) Z ω = ∂n+1(baω)− b∂n+1(aω) = ∂1b Z aω

and thus Z is defined on Ω1,0
⊗B Ωn,0. �

Lemma 7.6. The map Z : Ω1,0
⊗B Ωn,0

→ Ωn+1,0 is surjective.

Proof. One shows by induction that for all a1, . . . , ak ∈ B the relation

∂1a1 Z (∂1a2 Z (· · · Z ∂1ak) · · ·) = ∂k(a1∂1a2 Z (· · · Z ∂1ak) · · ·) (51)

holds. The claim of the lemma holds for n = 0. Using Lemma 7.4 and (51) one shows by induction on n that

Ωn,0
= LinC{a0∂1a1 Z (∂1a2 Z (· · · (Z∂1an) · · ·)) | a0, a1, . . . , an ∈ B}. �
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As in [7] let Γ∧∂,u denote the universal differential calculus with FODC (∂ : B→ Γ∂). Define a map

ιn : Γ∧n
∂,u → Ωn,0

a0∂a1 ∧ ∂a2 ∧ · · · ∧ ∂an 7→ a0∂1a1 Z (∂1a2 Z (· · · Z ∂1an))

by repeated use of the map Z.

Lemma 7.7. The map ιn is well defined.

Proof. By definition of Γ∧∂,u it suffices to show that for all ai , bi ∈ B such that
∑

i ai∂bi = 0 and for all ω ∈ Ω k,0,
where 0 ≤ k ≤ n − 2, one has

∑
i ∂1ai Z (∂1bi Z ω) = 0. This can be seen as follows.∑

i

∂1ai Z (∂1bi Z ω) =
∑

i

∂k+2(ai∂1bi Z ω)−
∑

i

ai∂k+2(∂1bi Z ω)

= −

∑
i

ai∂k+2(∂k+1(biω)− bi∂k+1ω)

=

∑
i

ai∂1bi Z ∂k+1ω = 0. �

Note that by construction ι∗ is a morphism of complexes. Moreover, by Theorem 7.1(i) and Proposition 2.2 the
dimensions of the covariant left B-bimodules Γ∧n

∂,u and Ωn,0 coincide. As ιn is a surjective map of covariant left
B-modules by Lemma 7.6 the categorical equivalence implies that ιn is an isomorphism.

Proposition 7.8. The map ι∗ : Γ∧∗∂,u → Ω∗,0 is an isomorphism of complexes of covariant B-bimodules.

7.3. The differential calculus Γ∧
∂,u

Recall from Section 7.1 that there exists a second irreducible covariant FODC (Γ∂ , ∂) over B. It follows from
(41) that T∂ ∼= M(−αs)

∗. As in the case Γ∧∂,u the universal differential calculus Γ∧
∂,u

can be obtained as the locally
finite dual of a sequence of Uq(g)-modules induced by Uq(lS)-modules. This can be seen using the involutive algebra
automorphism coalgebra antiautomorphism η : Uq(g)→ Uq(g) defined in Section 3.1. The exact sequences C S

∗,0 and
C S
∗,0 from the previous subsection can be endowed with a new Uq(g)-module structure via η. Using the isomorphism

V M(λ)
η

∼= V M(λ)∗ and W M(λ)
η
∼= W M(λ)∗ one obtains complexes

C S
0,∗ : 0 −→ C S

0,dim g /pS

ϕS
dim(g /pS )
−→ · · ·

ϕS
1
−→ C S

0,0
εµ
−→ V (0) −→ 0,

and

C S
0,∗ : 0 −→ C S

0,dim g /pS

ϕS
dim(g /pS )
−→ · · ·

ϕS
1
−→ C S

0,0

εµ
−→ Uq(g)⊗Uq (pS) V (0) −→ 0,

where

C S
0,n =

⊕
w∈W S , l(w)=n

V M(w.0)∗ , C S
0,n =

⊕
w∈W S , l(w)=n

W M(w.0)∗ .

If w,w′ ∈ W S and w→ w′ then the component of the differential which maps V M(w.0)∗
→ V M(w′.0)∗ is given by

u ⊗ ξ−w.0 7→ uxw,w′ ⊗ ξ−w′.0

where xw,w′ = η(yw,w′). Taking locally finite duals one obtains a complex

Ω0,∗
: 0←− Ω0,dim g /pS

∂dim(g /pS )
←− · · ·

∂1
←− Ω0,0 ∼= B←− C←− 0.

To show that Ω0,∗ is isomorphic as a complex of covariant B-bimodules to the complex Γ∧
∂,u

constructed in [7, 3.3.2]
the arguments of the last subsection can be repeated.
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7.4. The differential calculus Γ∧d,u

Combining the constructions from the previous two subsections the q-analogue of the de Rham complex over
G/L S can also be realized as a locally finite dual of a sequence of Uq(g)-modules induced by Uq(lS)-modules. To
this end define

C S
n,m :=

⊕
w1,w2∈W S

l(w1)=n, l(w2)=m

W (w1.0, w2.0). (52)

Recall that for each w1, w2 ∈ W S the Uq(g)-module W (w1.0, w2.0) is a cyclic module generated by 1 ⊗ (vw1.0 ⊗

ξ−w2.0). If w1, w
′

1, w2 ∈ W S and w1 → w′1 define a map

hw1,w
′

1;w2
: W (w1.0, w2.0)→ W (w′1.0, w2.0),

u ⊗ (vw1.0 ⊗ ξ−w2.0) 7→ uyw1,w
′

1
⊗ (vw′1.0

⊗ ξ−w2.0).

Similarly, if w1, w2, w
′

2 ∈ W S and w2 → w′2 define a map

hw1;w2,w
′

2
: W (w1.0, w2.0)→ W (w1.0, w′2.0),

u ⊗ (vw1.0 ⊗ ξ−w2.0) 7→ uxw2,w
′

2
⊗ (vw1.0 ⊗ ξ−w′2.0

).

Note that the symbol in the above definitions of C S
n,m , hw1,w

′

1;w2
, and hw1,w

′

1;w2
is only a formal reminiscence of the

functor from Section 5.2. No functorial properties will be used in the present section.

Lemma 7.9. For all w0, w1, w2 ∈ W S such that w1 → w2 the maps hw1,w2;w0
and hw0;w1,w2

are well defined.

Proof. Note that

Uq(g)AnnUq (lS)(vw1.0 ⊗ ξ−w0.0) = Uq(g)AnnUq (lS)(yw1,w2 ⊗ (vw2.0 ⊗ ξ−w0.0))

because M(w1.0) ⊗ M(w0.0)∗ and Uq(lS)yw1,w2 ⊗ (vw2.0 ⊗ ξ−w0.0) ⊂ W (w2.0, w0.0) are isomorphic as Uq(lS)-
modules by Proposition 5.4. This proves that hw1,w2;w0

is well defined. The second statement follows analogously.
�

For each w2 ∈ W S one obtains a sequence

C S
∗,w2
: . . .

hn+1,w2
−→ C S

n,w2

hn,w2
−→ C S

n−1,w2

hn−1,w2
−→ · · ·

h1,w2
−→ C S

0,w2
(53)

where

C S
n,w2
=

⊕
w1∈W S , l(w1)=n

W (w1.0, w2.0), hn,w2
=

∑
w1,w

′
1∈W S , l(w1)=n

w1→w
′
1

hw1,w
′

1;w2
.

This sequence satisfies hn,w2
hn+1,w2

= 0 for all n ∈ N. Indeed, the exactness of the sequence (20) implies that for
any w1, w

′′

1 ∈ W S such that l(w1) = n + 1 and l(w′′1) = n − 1 one has∑
w′1∈W S ,

w1→w
′
1→w

′′
1

yw1,w
′

1
yw′1,w′′1 ∈ Uq(n

−)AnnUq (l
−

S )
(vw′′1 .0

).

Similarly, for each w1 ∈ W S one has a complex

C S
w1,∗
: . . .

hw1,n+1
−→ C S

w1,n

hw1,n
−→ C S

w1,n−1

hw1,n−1
−→ · · ·

hw1,1
−→ C S

w1,0 (54)

where

C S
w1,n =

⊕
w2∈W S , l(w2)=n

W (w1.0, w2.0), hw1,n =
∑

w2,w
′
2∈W S , l(w2)=n

w2→w
′
2

hw1;w2,w
′

2
.
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To prove exactness of the sequences (53) and (54) we extend the filtrations defined in Section 5.3 to the vector spaces
C S

n,w2
and C S

w1,n . Define

Fk
2 C S

n,w2
=

⊕
w1∈W S ,
l(w1)=n

Fk
2 W (w1.0, w2.0), Fk

1 C S
w1,n =

⊕
w2∈W S ,
l(w2)=n

Fk
1 W (w1.0, w2.0).

Lemma 7.10. For any w1, w2 ∈ W S the complexes C S
w1,∗

and C S
∗,w2

are filtered by the filtrations F1 and F2,
respectively.

Proof. Consider w1, w
′

1, w
′

2 ∈ W S such that w1 → w′1. We show that

hw1,w
′

1;w2
(Fk

2 W (w1.0, w2.0)) ⊂ Fk
2 W (w′1.0, w2.0).

Define Fk M(w2.0)∗ =
⊕

ht(µ+w2.0)≤k M(w2.0)∗µ. Then

Fk
2 W (w1.0, w2.0) ⊂ V+Uq(n

−)⊗ vw1.0 ⊗ F
k M(w2.0)∗

=

∑
ht(β)≤k

V+Uq(n
−)Uq(l

+

S )β ⊗ (vw1.0 ⊗ ξ−w2.0).

Therefore

hw1,w
′

1;w2
(Fk

2 W (w1.0, w2.0)) ⊂
∑

ht(β)≤k

V+Uq(n
−)Uq(l

+

S )β yw1,w
′

1
⊗ (vw′1.0

⊗ ξ−w2.0)

⊂ V+Uq(n
−)⊗ (vw′1.0

⊗ Fk M(w2.0)∗)

⊂ V+V− ⊗ M(w′1.0)⊗ F
k M(w2.0)∗.

The statement about C S
w1,∗

and F1 is verified analogously. �

Let grF2
C S
∗,w2

and grF1
C S
w1,∗

denote the graded complexes associated to the filtrations F2 and F1, respectively.

Lemma 7.11. One has isomorphisms of complexes

grF2
C S
∗,w2
∼= C S

∗,0 ⊗ M(w2.0)∗ (55)

grF1
C S
w1,∗
∼= C S

0,∗ ⊗ M(w1.0) (56)

for ∗ ≥ 0.

Proof. For e ∈
∑

ht(β)≤k Uq(l
+

S )β and u ∈ Uq(g) one obtains in analogy to the proof of Lemma 7.10

hw1,w
′

1;w2
(u ⊗ (vw1.0 ⊗ eξ−w2.0)) = ueyw1,w

′

1
⊗ (vw1.0 ⊗ ξ−w2.0)

∈ uyw1,w
′

1
⊗ (vw1.0 ⊗ eξ−w2.0)+ F

k−1
2 W (w′1.0, w2.0).

This shows (55) and (56) is verified analogously. �

Proposition 7.12. For any w1, w2 ∈ W S and n ∈ N the complexes C S
w1,∗

and C S
∗,w2

are exact in C S
w1,n and C S

n,w2
,

respectively.

Proof. This follows immediately from Lemma 7.11 and the exactness of the complexes C S
∗,0 and C S

0,∗. �

The above proposition is one main step in order to prove that C S
∗,∗ defined in (52) together with the maps

hn,∗ : C
S
n,∗→ C S

n−1,∗, hn,m :=
∑

w2∈W S , l(w2)=m

hn,w2

h
∗,m : C

S
∗,m → C S

∗,m−1, hn,m := (−1)n
∑

w1∈W S , l(w1)=n

hw1,m

is a double complex.
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Proposition 7.13. (C S
∗,∗, h

∗,∗, h
∗,∗) is a double complex, i.e. for any n,m ∈ N the relation

hn−1,m ◦ hn,m + hn,m−1 ◦ hn,m = 0 (57)

holds.

Proof. Note first that the claim of the proposition holds for n = m = 1. Indeed, recall that the simple reflection ss
corresponding to αs is the only element in W S of length one and that ss .0 = −αs . Thus

C S
0,1 = Uq(g)⊗Uq (lS)(M(0)⊗ M(−αs)

∗)

C S
1,0 = Uq(g)⊗Uq (lS)(M(−αs)⊗ M(0)∗)

C S
1,1 = Uq(g)⊗Uq (lS)(M(−αs)⊗ M(−αs)

∗)

and up to a sign the maps h1,∗ and h
∗,1 are determined by yss ,1 = Fs and xss ,1 = Es , respectively. Therefore

(h0,1 ◦ h1,1 + h1,0 ◦ h1,1)(u ⊗ (v−αs ⊗ ξαs )) = u(Fs Es − Es Fs)⊗ (v0 ⊗ ξ0) = 0

for all u ∈ Uq(g).
Now the proof is performed by induction over n and m. Assume that (57) holds for some n,m ∈ N. We will show

that this implies (57) with n replaced by n + 1. The induction over m is performed analogously.
Note that (57) is equivalent to

0 = [yw1,w
′

1
, xw2,w

′

2
] ⊗ (vw′1.0

⊗ ξ−w′2.0
) ∈ C S

n−1,m−1

for all w1, w
′

1, w2, w
′

2 ∈ W S such that l(w1) = n, l(w2) = m and w1 → w′1, w2 → w′2. In particular one gets for any
w′′1 ∈ W S such that l(w′′1) = n + 1 the relation∑

w1∈W S , l(w1)=n
w′′1→w1→w

′
1

yw′′1 ,w1
[yw1,w

′

1
, xw2,w

′

2
] ⊗ (vw′1.0

⊗ ξ−w′2.0
) = 0

and thus using hn,∗ ◦ hn+1,∗ = 0 one obtains∑
w1∈W S , l(w1)=n
w′′1→w1→w

′
1

[yw′′1 ,w1
, xw2,w

′

2
]yw1,w

′

1
⊗ (vw′1.0

⊗ ξ−w′2.0
) = 0.

By the exactness stated in Proposition 7.12 for allw′′1 , w1, w2, w
′

2 ∈ W S ,w′′1 → w1,w2 → w′2, l(w1) = n, l(w2) = m
there exist elements uw′′′1 ∈ Uq(g) such that the relation

[yw′′1 ,w1
, xw2,w

′

2
] ⊗ (vw1.0 ⊗ ξ−w′2.0

) =
∑

w′′′1 ∈W S

w′′′1 →w1

uw′′′1 yw′′′1 ,w1
⊗ (vw1.0 ⊗ ξ−w′2.0

) (58)

holds. By Corollary 5.6 the above relation implies

0 = [yw′′1 ,w1
, xw2,w

′

2
] ⊗ (vw1.0 ⊗ ξ−w′2.0

) ∈ C S
n,m−1.

This is relation (57) with n replaced by n + 1. �

Using Proposition 7.13 one can now define a double complex of covariant B-bimodules setting

Ωm,n
=

⊕
w1,w2∈W S

l(w1)=m, l(w2)=n

Ω(w1, w2)

where for w1, w2 ∈ W S we define

Ω(w1, w2) := { f ∈ W (w1.0, w2.0)∗ | dim( f Uq(g)) <∞}.
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Note that by definition Ωm,n
= { f ∈ Cm,n | dim( f Uq(g)) <∞}. Thus the differentials h

∗,∗ and h
∗,∗ on C∗,∗ induce

differentials ∂∗,∗ and ∂
∗,∗

on Ω∗,∗, respectively. Proposition 7.13 implies that (Ω∗,∗, ∂∗,∗, ∂∗,∗) is a double complex.
Let (Ω∗, d∗) denote the corresponding total complex, i. e. Ωn

=
⊕

k+l=n Ω k,l and the differential dn
: Ωn−1

→ Ωn

is given by

dn
=

n∑
m=0

∂n−m,m
+ ∂

m,n−m
.

We are now in a position to formulate the main result of this paper.

Theorem 7.14. There exists an isomorphism ι∗ : Γ∧d,u → Ω∗ of complexes of covariant B-bimodules.

The proof is performed as in Section 7.2 up to slight modifications. The details are given for the convenience of
the reader.

Note first that (d1
: B → Ω1) is a covariant FODC isomorphic to the FODC (d : B → Γ∧1

d,u) constructed in [7].
Indeed, Ω1

= Ω1,0
⊕ Ω0,1 and Γ∧1

d,u = Γ∧1
∂,u ⊕ Γ∧1

∂,u
and the isomorphisms of calculi (Ω1,0, ∂1,0) = (Γ∧1

∂,u, ∂) and

(Ω0,1, ∂0,1) = (Γ∧1
∂,u
, ∂) have been noted in Sections 7.2 and 7.3, respectively.

Next note that the following analogue of Lemma 7.4 holds.

Lemma 7.15. The map

φn : B ⊗ Ωn
→ Ωn+1, b ⊗ ω 7→ b dn+1ω

is surjective.

Proof. Note that for all k, l the covariant B-modules Ω k,l+1 and Ω k+1,l have no irreducible component in common.
Indeed,

(Ξ ◦ Φ)Ω k,l+1
=

⊕
w1,w2∈W S

l(w1)=k, l(w2)=l+1

M(w1.0)∗ ⊗ M(w2.0)

lies in the eigenspace corresponding to the eigenvalue qk−(l+1) of the action of the element τ(ωs) in the simply
connected quantized universal enveloping algebra Ǔq(g) [9, 3.2.9]. Thus to prove surjectivity of φn it is sufficient to
show that the maps

φk,l : B ⊗ Ω k,l
→ Ω k+1,l , b ⊗ ω 7→ b∂ω

φk,l : B ⊗ Ω k,l
→ Ω k,l+1, b ⊗ ω 7→ b∂ω

are surjective.
Let w1, w2 ∈ W S such that Ω(w1, w2) ⊂ Ω k+1,l . Choose w′1 ∈ W S such that w1 → w′1. Let {ξi } be a basis of

weight vectors of M(w2.0)∗. By the categorical equivalence there exist elements fi ∈ Ω(w′1, w2) such that

fi (1⊗ vw′1.0 ⊗ ξ j ) = δi j .

Using the fact that B separates U = Uq(g)/Uq(g)Uq(lS)
+ [6, Proposition 7] and Corollary 2.3 one sees that there

exists an element bw1 ∈ B such that

bw1(yw,w′1(1))yw,w′1(2) = δw,w1 for all w ∈ W S, w→ w′1.

One obtains

∂k,l(bw1 fi )(1⊗ vw.0 ⊗ ξ j ) = (bw1 fi )(yw,w′1 ⊗ vw.0 ⊗ ξ j ) = δw,w1δi, j .

Let {vi } denote a weight basis of M(w1.0). Acting with elements of Uq(lS) on ∂k,l(bw1 fi ) one obtains elements gi, j,w1

such that gi, j,w1(1⊗ vk ⊗ ξl) = δi,kδ j,l and

gi, j,w1 |W (w,w2) = 0 for all w ∈ W S, w 6= w1.
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Thus for the covariant B-bimodule Λ = Im(φk,l |B⊗Ω(w′1,w2)
) the pairing

Λ/B+Λ×
⊕
w1∈W S

w1→w
′
1

M(w1, w2)→ C

is nondegenerate. By the categorical equivalence one obtains

Λ =
⊕
w1∈W S

w1→w
′
1

Ω(w1, w2)

which proves the surjectivity of φk,l . The surjectivity of φk,l is proved analogously. �

The remaining steps to identify (Ω∗, d∗) with (Γ∧d,u, d) are now straightforward analogues of the Lemmas 7.5–7.7
and of Proposition 7.8. The proofs are omitted. Define a map

Z : Ω1
⊗B Ωn

→ Ωn+1,

(a d0b)⊗ ω 7→ a d0b Z ω := a dn(bω)− ab dnω.
(59)

Lemma 7.16. The map Z is well defined.

Lemma 7.17. The map Z : Ω1
⊗B Ωn

→ Ωn+1 is surjective.

Define a map

ιn : Γ∧n
d,u → Ωn

a0da1 ∧ da2 ∧ · · · ∧ dan 7→ a0d0a1 Z (d0a2 Z (· · · Z d0an))

by repeated use of the map Z.

Lemma 7.18. The map ιk is well defined.

Proposition 7.19. The map ι∗ : Γ∧∗d,u → Ω∗ is an isomorphism of complexes of covariant B-bimodules.

Proof of Theorem 7.14. This proof is now performed in complete analogy to the proof of Proposition 7.8. First note
that by construction ι∗ : Γ∧∗d,u → Ω∗ is a morphism of complexes. Moreover, by Theorem 7.1(iii), the definition of
Ωn , and Proposition 2.2 the dimensions of the covariant B-modules Γ∧n

d,u and Ω k coincide. As ιn is a surjection of
covariant B-modules by Lemma 7.17 the categorical equivalence implies that ιn is an isomorphism. �
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Appendix. Commonly used notation

Symbols defined in Section 2.1 in order of appearance:
g , r , h, R, π , αi , R+, R−, n+, n−, (·, ·), Q, P , α∨i , ht, ωi , (ai j ), P+, Q+, V (µ), Π (V (µ)), G, S, QS , Q+S , R±S ,

PS , Pop
S , pS , p

op
S , lS , L S , P+S , M(λ), W , sα , WS , W S , l, w.µ, ρ, w→ w′, w ≤ w′.
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Section 3.1:
q element of C, not a root of unity
Uq(g) quantized enveloping algebra of g

Ki , K−1
i , Ei , Fi generators of Uq(g)

∆, κ, ε coproduct, antipode, and counit of Uq(g)

ad left adjoint action
η algebra isomorphism coalgebra antiautomorphism of Uq(g)

Uq(n
+) subalgebra of Uq(g) generated by {Ei | 1 ≤ i ≤ r}

Uq(n
−) subalgebra of Uq(g) generated by {Fi | 1 ≤ i ≤ r}

U 0 subalgebra of Uq(g) generated by {Ki , K−1
i | 1 ≤ i ≤ r}

G+ subalgebra of Uq(g) generated by {Ei K−1
i | 1 ≤ i ≤ r}

V (µ) irreducible left Uq(g)-module of highest weight µ ∈ P+

Vη Uq(g)-module with action twisted by η
V (µ)∗ right or left Uq(g)-module dual to V (µ)

cµf,v matrix coefficient of V (µ)

CV (µ) space of matrix coefficients of V (µ)

Cq [G] q-deformed coordinate ring of G

Section 3.2:
Uq(lS) subalgebra of Uq(g) generated by {Ei , Fi , K±1

j | αi ∈ S, α j ∈ π}

V− subalgebra of Uq(g) generated by {(ad k)Fi | k ∈ Uq(lS), αi 6∈ S}

V+ subalgebra of Uq(g) generated by {(ad k)(Ei K−1
i ) | k ∈ Uq(lS), αi 6∈ S}

Uq(l
−

S ) Uq(n
−) ∩Uq(lS)

Uq(l
+

S ) G+ ∩Uq(lS)

Uq(pS) subalgebra of Uq(g) generated by {Ei , K±1
i , F j | αi ∈ π, α j ∈ S}

Section 4.1:
M(λ) irreducible left Uq(lS)-module of highest weight λ ∈ P+S
V M(λ) Uq(g)⊗Uq (pS) M(λ) for λ ∈ P+S
V λ V M(λ) for S = ∅

ρS
∑
α∈R+S

α/2

Section 4.2:
C S

j
⊕

w∈W S , l(w)= j V M(w.µ) for a fixed µ ∈ P+

ϕS
j boundary operator of BGG resolution

fw,w′ fixed embedding of Verma modules Vw.µ
→ Vw′.µ if w ≤ w′

s(w1, w2) ±1
hw,w′ standard map induced by s(w,w′) fw,w′

yµ
w,w′

element of Uq(n
−) such that fw,w′(u ⊗ vw′.µ) = uyµ

w,w′
⊗ vw′.µ

yw,w′ s(w,w′)y0
w,w′
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Section 5.1:
W M(λ) Uq(g)⊗Uq (lS) M(λ) for λ ∈ P+S
W λ W M(λ) for S = ∅

Section 5.2:
Φλ canonical surjection W M(λ)

→ V M(λ)

V category of finite direct sums of V M(λ), λ ∈ P+S
W category of finite direct sums of W M(λ), λ ∈ P+S
: V →W functor defined above Proposition 5.3

Uq(p
op
S ) subalgebra of Uq(g) generated by {E j , K±1

i , Fi | αi ∈ π, α j ∈ S}

Section 5.3:
xµ
w,w′

η(yµ
w,w′

)

θ1, θ1, θ2, θ2 Uq(lS)-module homomorphisms defined in and before Proposition 5.4
W (µ, ν) Uq(g)⊗Uq (lS)(M(µ)⊗ M(ν)∗)

F∗1 ,F
∗

2 Filtrations of W (µ, ν) defined by (27) and (28)

Section 6.1:
A Cq [G]

B {b ∈ A | b(1)b(2)(k) = ε(k)b for all k ∈ Uq(lS)}

B+ {b ∈ B | ε(b) = 0}
←−A A/B+A
〈·, ·〉 canonical pairing Uq(lS)×

←−A → C
←−AM category of finite dimensional left←−A -comodules
MUq (lS) category of finite direct sums of modules of the form M(λ)∗, λ ∈ P+S
Ξ functor

←−AM→MUq (lS) defined by (36)
P�C Q cotensor product of P and Q over coalgebra C
A
BM category of left A-covariant left B-modules

Φ functor ABM→
←−AM defined by (37)

Ψ functor
←−AM→ A

BM defined by (38)

Section 6.2:
Ω(λ) { f ∈ (W M(λ))∗ | dim( f Uq(g)) <∞}

c canonical inclusion Ω(λ)→ Uq(g)
∗

Section 7.1:
(Γ∂ , ∂), (Γ∂ , ∂) the two irreducible covariant FODC over B
T∂ , T∂ quantum tangent space of Γ∂ and Γ∂ , respectively
(Γd, d) (Γ∂ ⊕ Γ∂ , ∂ ⊕ ∂)
Γ∧∂,u, Γ∧

∂,u
, Γ∧d,u universal differential calculus of Γ∂ , Γ∂ , and Γd, respectively.
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